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Algorithms for strategic conflict detection are presented in this report. The algorithms are based 
on the use of a 4-dimensional space and time grid to represent the airspace. Aircraft trajectories are 
computed and stored in the appropriate grid cells while checking to see if those cells are already 
occupied. An occupied cell indicates a conflict, either with another aircraft, or with a weather storm 
cell or region of restricted airspace. First, a deterministic version of the algorithm is introduced. This 
is followed by the development of a stochastic conflict detection algorithm that accounts for the effects 
of uncertainty on trajectory and weather storm cell prediction. These grid-based conflict detection 
algorithms are more efficient than existing algorithms, because they eliminate the need for pairwise 
computation of inter-aircraft distance. The computational efficiency comes at the expense of additional 
required computer memory, but the required memory is within the limits of what is currently available.

I.  Introduction

Conflict detection is the process of detecting conflicts among two or more aircraft, or between aircraft and some 
other airspace constraint such as restricted airspace or regions of bad weather. The term strategic means that 
conflict-detection is to be performed with a long look-ahead time considering the entire aircraft trajectory. This is in 
contrast with tactical conflict-detection which would be performed on a shorter time scale, typically just a few minutes. 
The boundary between tactical and strategic concepts is arbitrary but is considered here to be at about 20 minutes.

Strategic conflict-detection algorithms for air-traffic control automation have been under development since the 
mid-1990’s.1-5 Ground-based ATC automation was among the first applications to require large-scale conflict detection 
algorithms. As free-flight concepts emerged, airborne-automation tool developers also needed algorithms to efficiently 
detect conflicts over a large airspace domain. Conflict detection is computationally demanding, especially when 
considered in the context of both conflict detection and resolution, because each trial conflict-resolution maneuver 
initiates a new round of conflict detection. Resolving conflicts may induce one or more new conflicts along the 
remainder of a trajectory, which further increases the computational demands of a conflict detection algorithm.6,7

This paper presents algorithms for computationally efficient strategic air traffic conflict detection. The algorithms 
are based on the use of a 4-dimensional (4D) grid of space and time to represent the airspace. These grid-based conflict 
detection algorithms are shown to be more computationally efficient than existing algorithms, because they eliminate 
the need for pairwise computation of inter-aircraft distance. The improved computational efficiency comes along with 
an increase in required computer memory, but the required increase is well within limits of currently available 
computer memory.
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The basic conflict detection algorithm in this paper is introduced in its deterministic form, followed by an 
extension to the stochastic case. By extending the basic algorithm to one that considers the inherent uncertainty on 
trajectory and weather prediction, it is proposed that the conflict detection algorithm behaves like a traffic congestion 
monitor for longer-term predictions of air traffic conflicts.

A review of prior work on the conflict detection problem is presented in the next section. This is followed by the 
introduction of the Conflict Grid approach to conflict resolution.

II.  Conflict Detection Background

The task of conflict detection is to determine whether all aircraft within a specified spatial and time domain will 
maintain adequate spatial separation. Aircraft trajectories are typically discretized as a function of time so that the 
distances between each aircraft can be computed at each discrete instant of time and compared to the allowable 
separation distance.The number of point-to-point distance comparisons is expressed as

Ncomparisons NT NAC i–( )

i 1=

NAC

∑⋅
NT NAC

2 NAC–( )
2

-------------------------------------= = (1)

where NT  is the number of time-steps in the conflict-detection domain, and NAC  is the number of aircraft in the 
domain. The separation comparisons may be partitioned into horizontal and vertical components and expressed as

x∆ 2 y∆ 2+( ) dmin
2>

z∆ hmin>
(2)

where x∆  and y∆  are the distances between the two comparison aircraft in the horizontal x  and y  directions, z∆  is 
the vertical distance between the aircraft, dmin  is the required minimum horizontal separation distance, and hmin  is 
the required minimum vertical separation distance. For small numbers of aircraft, the computational burden for this 
type of conflict search is not an issue, but as NAC  increases, the computational burden grows quadratically. The 
quadratic growth rate of the brute-force conflict search has led to a search for more efficient conflict-detection 
algorithms.

Initial attempts at developing efficient conflict-resolution algorithms were made during the development of the 
Center TRACON Automation System (CTAS) at the NASA Ames Research Center.8 Since CTAS was one of the first 
practical large-scale ATC automation tools to be developed, it was the first to have a need for efficient 
conflict-detection algorithms.

The paper by Issacson and Erzberger1 describes a practical approach to conflict detection for CTAS using 
heuristics such as altitude pruning and time-skipping to limit the conflict search space. Aircraft trajectories are first 
computed in time and space using 10 sec. time-steps (equivalent to 1.3 nmi at 480 knots) before applying heuristics to 
limit the conflict search. Altitude pruning is the process of eliminating potential conflict pairs that are never flying at 
the same altitude. The use of altitude pruning typically removed 60-80% of all possible trajectory pairs from the 
detailed conflict search. Time-skipping is used to limit the number of points that need to be checked for conflicts. Time 
skipping uses the fact that if two aircraft are separated by a large distance at some point in time, then there is no need 
to check every 10 sec. along the trajectories for a conflict because it would be physically impossible for a conflict to 
occur until the aircraft could travel the current separation distance. A further reduction in computation is achieved by 
only computing the sum of the squares of x∆  and y∆  when both of those terms are individually less than the required 
separation. The computational performance of this algorithm still grows as O n2( ) , but the actual number of 
computations is proportionally reduced through the applied heuristics.
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The paper by Sridhar and Chatterji2 examines aircraft conflict detection using principles from computer science 
search and sort algorithms. A sorting-based algorithm partitions the airspace into a Cartesian grid. Aircraft are stored 
in the grid cells by using a hashing function to convert the x - and y -coordinates into grid indices. The grid matrix is 
then unwrapped into a single vector of bin numbers. The vector of bin numbers is sorted using an efficient sorting 
algorithm (e.g., Heapsort, Quicksort) so that repeated bin numbers might be easily located. From the repeated bin 
numbers, the corresponding grid locations and the associated aircraft numbers are uniquely determined. The 
computational complexity of this algorithm is shown to be O n nlog( ) .

For the Quicksort method, the average number of computations, Cq  was shown to be

Cq 8 M n⋅ 1+( )log2 M n⋅( )= (3)

where M  is the maximum number of bins occupied by any single aircraft trajectory and n  is the number of aircraft. 
In Ref. 2, an example is given where the average ground speed is assumed to be 500 knots, and the conflict look-ahead 
time is 20 min so that the maximum number of bins per aircraft for 5nmi by 5nmi grid cells is given by

M 500 n.mi./hr 20 60⁄( ) hr⋅
5 nmi

-------------------------------------------------------------- 34= = (4)

For n 100=  and M 34= , equation (3) gives 31,765 computations. Even though this is an nlog2 n( )  algorithm, 
the proportionality constant in the area of interest still makes this computationally intensive.

The next algorithm considered in Ref. 2 is accumulator-based. The mapping of aircraft location to bin number is 
the same as in the sorting algorithm, but in this case, each time an aircraft is mapped into a bin, the number of aircraft 
in that bin is incremented by one. The search for conflicts can then be limited to those bins with more than one aircraft. 
Once the potential conflict bins have been located, the corresponding aircraft are directly checked for conflict.

The average number of computations required by the accumulator algorithm was shown to be

Ca M n⋅ Imax 1+( ) Jmax 1+( )+= (5)

where M  and n  are as previously defined, and Imax  and Jmax  are the maximum number of grid cells in the airspace 
domain of interest. In Ref. 2, an 800-nmi square region is examined for a 20 min conflict look-ahead time so that 
M 34=  once again. In this case, Imax  and Jmax  are both 160 for 5 nmi grid cells. For 100 aircraft, this requires 29,321 
computations, which is only marginally better than the sorting algorithm. The benefit of the accumulator algorithm is 
realized for greater numbers of aircraft since the number of computations grows as O n( )  instead of as O n nlog( ) .

The approach taken in Ref. 3 is to use a geometric hashing algorithm to identify clusters of aircraft that may be in 
conflict with one another. Once the clusters have been identified, they are sent as inputs to the conflict-resolution 
algorithm, which then uses brute-force conflict-search techniques to check potential resolution maneuvers for 
conflicts. The geometric hashing algorithm used for identifying clusters is similar to the accumulator method of Ref. 
2, but with the additional discretization of the time dimension to create a 4-D grid of the airspace. The grid cells are 
sized according to the minimum separation requirement (5 nmi), and presumably the time-grid size is to be set short 
enough that the fastest aircraft would not travel through more than the minimum separation distance during one time 
interval (a value of 0.1 min was used in the example given in the paper). Since conflicts might occur with aircraft in 
neighboring grid cells, of which there are 27 in 3-D space or 81 in 4-D space (adding the time dimension to the three 
spatial dimensions), the neighboring cells are also checked. In addition to looking at the immediately neighboring grid 
cells, certain other non-conflict aircraft are identified that are sufficiently close to the cluster that should be treated as 
constraints during the conflict-resolution phase. In Ref. 2 it is suggested that the cluster identification algorithm tends 
to take time linear in the number of aircraft, but the conflict detection in the cluster conflict-resolution phase is still 
O n2( ) , where n  is the number of aircraft in a cluster.
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Additional research has been conducted in the field of conflict-probability prediction, which is closely related to 
conflict detection.4 Instead of making binary decisions on whether a conflict will occur, a probability is assigned to 
each potential conflict so that conflict-resolution maneuvers are initiated in such a way as to minimize the cost of the 
maneuver.

III.  Conflict Grid Method

An efficient conflict-detection algorithm called the Conflict Grid (CG) method is now introduced. The CG method 
is similar to the algorithm presented in Ref. 3, though a few key differences result in the CG method requiring a 
negligible amount of additional computations in the context of aircraft conflict detection and resolution. The 
deterministic version of the CG is developed first, followed by the introduction of a stochastic version of the CG that 
accounts for uncertainty in trajectory and storm cell prediction.

A.  Deterministic Conflict Grid

The idea behind the CG method is to store aircraft trajectories in a 4-D grid space (three spatial dimensions and 
time) as they are computed by setting the values of the corresponding grid cells to 1 (binary “on,” or “true”). An 
illustration of the CG for the 3-D case (two horizontal dimensions and time) is provided in 
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Fig. 1.  The Conflict Grid method of conflict detection.
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development of the deterministic CG algorithm, an extension to stochastic conflict detection is presented where grid 
cell values represent the probability of an active constraint in that cell and may take on any value between zero and 
one. The grid cell dimensions are set according to the allowable aircraft separation limits. If a grid cell is found to be 
already occupied, then it is immediately known that the current trajectory will be in conflict, and conflict-resolution 
maneuvers may be initiated. Note that regions of bad weather and special-use airspace may easily be incorporated into 
the conflict grid by setting the corresponding grid cell values to 1 for any of these areas of restricted airspace. The 
computational benefit of the CG approach is that it eliminates pairwise distance computations. The claim that the CG 
technique incurs a negligible amount of additional computations stems from the fact that trajectories must be stored in 
memory anyway. Since conflicts are detected during the storage process, no additional computations are required for 
conflict detection.
4  
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The airspace is first partitioned into a 4-D grid of space and time. The coordinates used here are longitude, latitude, 
altitude, and time, but any convenient set of independent coordinates may be used. The airspace is partitioned by 
creating a set of separate 3-D grids (longitude, latitude, time) for each discrete flight level. If the flight level structure 
of the current air transportation system is used, then each flight level extends vertically by 1,000 ft. The spatial 
longitude and latitude grid dimensions are set equal to one another, and this dimension is left as a variable for the 
purpose of conducting parametric studies of the effects of changing the grid spacing. The time grid size, t∆ , is linked 
to the spatial grid size, x∆ , such that an aircraft flying at the fastest expected ground speed would not travel more than 

x∆  distance in t∆  time. For example, if the fastest expected ground speed was 600 knots, and x∆ 5 nmi= , then the 
time resolution would be set to t∆ 30 sec≤ .

The time grid dimension is created using a rolling time window. The window is chosen to span the appropriate 
amount of conflict look-ahead time. The maximum flight time for an aircraft across the continental United States is 
less than 7 hr, so this can be used as the maximum bound on the range of the CG time-window. With these definitions, 
the CG may be represented by a 3-D matrix for each flight level, FLp , as follows

CGFLp
CG i j k, ,( )=

0 i τmax τmin–( )
τ∆

-------------------------------≤ ≤

0 j λmax λmin–( )
λ∆

--------------------------------≤ ≤

0 k tmax tmin–( )
t∆

-----------------------------≤ ≤
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

τ∆
Kx x∆⋅

max λ( )( )cos
-------------------------------≡

λ∆ Kx x∆⋅≡

t∆
tmax tmin–( )

tmax tmin–( ) Vgmax
⋅

x∆
--------------------------------------------- 1+

⎝ ⎠
⎜ ⎟
⎛ ⎞
-------------------------------------------------------------------≡

(6)

where τ  and λ  are longitude and latitude, respectively, t  is time, x∆  is the spatial grid dimension, Kx  is a unit 
conversion constant, Vgmax

 is the maximum anticipated ground speed, and a  is defined as the nearest integer to a  
rounded upwards. The maximum and minimum grid dimensions are then chosen for the particular needs of the problem 
being solved.

As is discussed later in this paper, strategic conflict resolution may benefit from much longer look-ahead times 
than are typically considered for tactical conflict resolution. When considering tactical conflict resolution between two 
aircraft, uncertainties in trajectory prediction limit the useful look-ahead time to less than about 20 minutes. If using 
strategic conflict resolution as a form of traffic congestion monitoring, then it can be useful to examine conflict 
resolution over the entire duration of a typical flight. The Continental United States extends approximately 2,500 nmi 
from east to west, and 1,500 nmi from north to south. For a 7-hr conflict look-ahead time, a time grid resolution of 30 
sec., and grid spacing of 5 nmi, the upper limit on the memory required for the Conflict Grid per flight level is given by

µCG 0.125 byte
bit

-----------⎝ ⎠
⎛ ⎞ Nx Ny Nt⋅ ⋅( ) 15.8 MB= = (7)

where Nx , Ny , and Nt  are the number of grid cells in the x , y , and t  dimensions, respectively. Recall that for the 
deterministic conflict grid, only one bit is required for each grid cell. Therefore, the amount of memory required for 
the conflict grid at each flight level is less than 16 MB, which is not a challenge for current-day technology.

The procedure for conflict detection is now described. At the beginning of the conflict-detection loop, the CG is 
cleared so that the value of each grid cell is set to zero. The next step is to store any weather constraints or special-use 
airspace constraints in the CG by setting the corresponding constrained airspace grid cell values to one. Next, each 
aircraft is placed sequentially in what is called the Active Aircraft List (AAL). The AAL is traversed to compute a 
5  
American Institute of Aeronautics and Astronautics



predicted trajectory for each aircraft. The trajectory is generally computed and stored as a set of vectors of three spatial 
coordinates versus time. These vectors are interpolated to the discrete time values of the conflict grid. As the values 
are interpolated, the corresponding values of the conflict grid are checked. If the grid cell values are zero, then that 
means there are no prior aircraft occupying that cell, and that the airspace of that cell is not restricted by bad weather 
or other constraint. In that case, the value of that grid cell is set to 1 to signify that it is occupied by the current aircraft. 
If any of the trajectory points for the current aircraft are found to be in conflict at any of the grid cells, then a conflict 
has been detected.

A few subtle features of the CG algorithm are now addressed. If just the occupied grid cells are marked as such, 
it may occur that aircraft in neighboring grid cells are in conflict with one another, because the basic CG algorithm 
does not include any space between neighboring grid cells 

Fig. 2.  Illustration of a missed conflict at a grid 
cell boundary.

(Fig. 2). Another situation that might occur is that the 

discretized time-steps of a trajectory might overstep a grid cell so that a real conflict is not identified (Fig. 3).

One solution to these kinds of conflicts is to use a grid cell buffering technique. With grid-cell buffering, the CG 
cells would be made half the desired size, but then each time a trajectory point was stored in the grid, the neighboring 
cells would also be marked as being occupied (Fig. 4). By doing this in all 3 dimensions for the single flight-level 
problem ( x y t, , ), the types of conflicts mentioned above would all be detected. The cost of grid cell buffering is that 
the amount of memory required for the CG for any given aircraft spacing would increase by a factor of 8 ( 23 ). For 
the example given in equation (7), the amount of memory required would increase from 15.8 Mbytes to 126 Mbytes, 
which is still well within the memory capabilities of current-day computers. There would also be some minor 
computational costs incurred by requiring that additional grid cells be set for each trajectory point.

Another approach is to accept that these types of conflicts will occur and then to resolve the conflicts tactically. 
Even though inter-aircraft separation may be predicted to be less than the minimum allowable separation, the CG 
method ensures that, on average, there is enough airspace available to support all of the aircraft.

Finally, a stochastic extension would generalize the basic CG method and would also eliminate many of the subtle 
types of missed conflict alerts addressed above without having to resort to grid cell buffering. This stochastic extension 
is now presented.
6  
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Fig. 3.  Illustration of a missed conflict resulting from time discretization.

Fig. 4.  Grid-cell buffering to eliminate missed conflicts.
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B.  Stochastic Conflict Grid

Aircraft trajectory prediction, atmospheric prediction, and many other facets of the NAS are better characterized 
as stochastic processes than as deterministic processes. Errors in wind models can lead to rather large errors in 
down-range trajectory predictions. Storm forecast errors can either completely miss actual storms that develop, or can 
predict storms that never materialize. This suggests the need for a stochastic approach to conflict detection.

The probabilistic nature of predicted conflicts may be considered with a simple extension to the deterministic CG 
algorithm. The extended algorithm is referred to as the Stochastic Conflict Grid (SCG). The basic idea is to store the 
probability that at least one active constraint exists in any given grid cell rather than using a binary yes or no value. 
An active constraint is any entity that requires exclusive use of the airspace, such as an aircraft, a weather storm cell, 
special-use airspace, or even an aircraft trailing wake vortex. This generalizes the CG technique by incorporating 
important conflict-probability concepts from prior research on pairwise conflict-probability estimation.4,5 Some minor 
increase in computational overhead is incurred for the CG method itself, but as with the grid cell buffering technique, 
the overhead is negligible when compared with the other computational costs involved in trajectory computation. 
Apart from the conflict-detection algorithm, computing and maintaining models of aircraft trajectory-prediction 
accuracy might add significant overhead. The additional computational burden may be reduced by using simple 
probability models for aircraft trajectory-prediction uncertainty.

The probability that a constraint, ci , will be active in a particular grid cell may be modeled as a Bernoulli trial so 
that the probability is given by

Pi p constraint i is active( )≡ (8)

and the probability that the constraint will not be active is simply

p constraint i is not active( ) 1 Pi–( )= (9)

For a set of n  possible constraints, an easy way to compute the probability, P , that at least one of those constraints 
will be active is to compute the probability that no constraints will be active and then to subtract this from 1:

P p at least one active constraint( )≡ 1 1 Pi–( )

i 1=

n

∏–= (10)

where Π  is the serial product operator.

Rather than storing the individual probabilities for all of the potential constraints, it may be desirable to maintain 
a running total probability that at least one constraint will be active. This is easily shown to be given by

Pi 1 1 Pi–( ) 1 Pi 1––( )–= (11)

where Pi  is the running total probability that any constraint up to and including constraint ci  will be active, and Pi 1–  
is the running total probability that any constraint will be active before considering the new constraint, ci .

If trajectory-prediction error distributions are modeled as Gaussian, then the case of a two-aircraft conflict using 
the SCG would be identical to the method developed by Erzberger et al.4,5 for pairwise conflict-probability estimation. 
Following this method, the choice of whether or not to make a conflict-resolution maneuver would be based on the 
minimization of the expected cost of resolution. Low-probability conflicts are ignored because the expected cost of 
resolving a conflict that might not occur is too high. Over time, the probability increases to the point that delaying a 
conflict-resolution maneuver would result in a higher expected cost, because short-term conflict-resolution maneuvers 
are less efficient than strategic resolution maneuvers.
8  
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By the use of the SCG, this same conflict-probability method is generalized to the case of multiple aircraft and to 
the case of conflicts with any other type of constraint. Imagine a case where two aircraft are predicted to converge at 
some instant an hour in the future 

0.1

0.010.01 0.01

0.01

0.010.01 0.01

0.01

Fig. 5.  Example of low predicted conflict 
probability for two aircraft.

(Fig. 5). The probability that either aircraft will be in that particular grid cell (at that 
location at that instant in time) is low because of the growth rate of trajectory-prediction error. In this case, it would be 
more efficient to wait to see how the potential conflict develops. Now imagine that many aircraft are predicted to 
converge at the same point 

Fig. 6.  Example of higher conflict probability with multiple aircraft.
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0.2
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0.2

(Fig. 6). The probability that any one aircraft will be in that grid cell now increases, 
potentially to the point that the next aircraft predicted to be in that grid cell should be required to make a 
conflict-resolution maneuver. In this way, the SCG method behaves like a traffic congestion monitoring algorithm in 
addition to being a conflict detection algorithm.
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Weather storm cells are notoriously difficult to predict with any accuracy until they have actually developed into 
storms, and even then their prediction beyond 30 minutes is unreliable. Storm predictions are usually made such that 
a region of airspace can be identified as having some heightened potential for storm development. This heightened 
potential could be stored in the CG cells in a region 
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Fig. 7.  Conflict probabilities between storm cells and aircraft.

(Fig. 7). This would result in fewer aircraft being permitted to pass 

through that region because of the elevated probability of storm conflict. As the time of the storm prediction neared 
and the prediction became more accurate, the conflict probabilities in the corresponding grid cells would increase to 
the point where no aircraft would be permitted in those cells. This would be a gradual process so that sudden tactical 
maneuvers around unpredictable storm cells would be greatly reduced. The resolution thresholds could be modified 
empirically via simulation with real weather data to obtain good performance with the desired level of safety.

The case of special-use airspace is even easier to consider. Once special-use airspace is activated, it is known with 
certainty that a constraint is active in that region so the probabilities of the corresponding grid cells would be set to 1. 
This would block those cells from being occupied by any aircraft. Since the conflict grid is considered in both space 
and time, special use airspace that was only active during certain times of the day could easily be accommodated. The 
same principle applies to any regions of blocked airspace, whether it be for security, noise abatement, or other purpose.

IV.  Conclusions

A new method for computationally efficient strategic conflict-detection was presented. The Conflict Grid (CG) 
technique was shown to require a negligible amount of additional computation within the context of a system which 
computes and stores trajectories in memory. The Stochastic Conflict Grid (SCG) was introduced as an extension to the 
basic CG technique to generalize the concept of conflict detection to constraints with uncertainty. Through qualitative 
examples, it was proposed that the SCG technique generalizes the concept of conflict detection to that of traffic 
congestion monitoring.

Future studies should be conducted to identify potential challenges in implementing conflict grid techniques. 
Potential applications of conflict grid techniques should also be explored. For instance, it would be instructive to 
determine the utility of the SCG as a predictive traffic congestion monitoring tool by using it to generate 4-dimensional 
traffic/weather congestion maps.
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